Non-Latching Relays
Relays are electrical switches that are operated by electrical impulses with the primary function to open and close a circuit, they can also be referred to as industrial switches. There are 2 main types available, latching and non–latching relays.How do non-latching relays work?Non-latching relays are in a normally closed (NC) position and will stay in this state without power. When power passes through the circuit, the relay switched to a normally open (NO) position by using an internal coil to generate a magnetic force, holding this NO position. Once the current is turned off, it returns to the NC position. This makes non-latching relays well suited to push-button applications like keyboards and micro-controller input buttons.What are non-latching relays used for?Non-latching relays are highly durable and versatile components, making their performance long lasting and suitable for use in a wide range of applications, such as:Automotive enginesHousehold appliancesIndustrial machineryMedical equipmentTelecommunications equipmentWhat is the difference between latching and non-latching relays?Both types of relays in similar in design and function, however, a significant difference between them is that a latching relay will remain in the last position it when it was last powered, whereas a non-latching goes back to its normal position. This makes each more type of relay suitable for different applications. Considerations when selecting a relayWhen choosing a relay, it is important to consider a number of specifications to ensure it is fit for purpose, some factors include:Coil voltage – the required voltage to actuate the switching mechanism. If a voltage is too high this could damage the components, if it is too low then it will not actuate. Contact configuration – This is the state the contacts are in without power. For example SPST, single pole single throw.Contact material – the relay contacts are available in many materials that have certain properties. Common materials are gold, silver, tin oxide and nickel Coil power – the amount of power (watts) the coil operates at. This must match the power in the circuit for correct function. Coil resistance – the amount of resistance (ohms) in the circuit that the coil creates.
-
SPDT MINIATURE PCB RELAY,16A 110VAC COIL
IDR118,315.92 -
SPDT MINIATURE PCB RELAY,16A 12VDC COIL
IDR79,506.62 -
SPDT MINIATURE PCB RELAY,16A 230VAC COIL
IDR237,785.63 -
SPDT MINIATURE PCB RELAY,16A 24VAC COIL
IDR0.00 -
SPDT MINIATURE PCB RELAY,16A 24VDC COIL
IDR83,597.33 -
SPDT MINIATURE POWER RELAY,5A 24VDC COIL
IDR172,334.27 -
SPDT MINIATURE POWER RELAY,6A 12VDC COIL
IDR130,902.72 -
SPDT MINIATURE POWER RELAY,6A 24VDC COIL
IDR141,916.17 -
SPDT MINIATURE POWER RELAY,6A 5VDC COIL
IDR135,098.32 -
SPDT PCB HI-TEMP RELAY, 16A 12VDC COIL
IDR56,850.38 -
SPDT PCB POWER RELAY,10A 12VDC COIL
IDR77,828.38 -
SPDT PCB POWER RELAY,10A 24VDC COIL
IDR75,625.69 -
SPDT PCB POWER RELAY,10A 5VDC COIL
IDR66,080.70 -
SPDT PCB POWER RELAY,12A 230AC COIL
IDR146,111.77 -
SPDT PCB POWER RELAY,12A 24VAC COIL
IDR83,177.77 -
SPDT PCB POWER RELAY,12A 24VDC COIL
IDR63,038.89 -
SPDT PCB POWER RELAY,16A 12VDC COIL
IDR59,682.41 -
SPDT PCB POWER RELAY,16A 24VDC COIL
IDR110,449.17 -
SPDT PCB POWER RELAY,5A 12VDC COIL
IDR64,717.13 -
SPDT PCB POWER RELAY,5A 24VDC COIL
IDR53,179.23 -
SPDT PCB POWER RELAY,8A 12VDC COIL
IDR72,164.32 -
SPDT PCB POWER RELAY,8A 24VDC COIL
IDR74,157.23 -
SPDT PCB RELAY, 3.5MM PIN, 12A 24VAC
IDR40,592.43 -
SPDT PCB RELAY, 5MM PIN, 16A 12VDC
IDR61,780.21